## Related Problems with Solutions

## Problem 3:

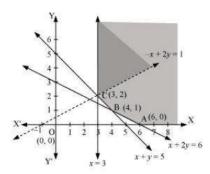
Question 9:

Maximise Z = -x + 2y, subject to the constraints:

$$x \ge 3$$
,  $x + y \ge 5$ ,  $x + 2y \ge 6$ ,  $y \ge 0$ 

Answer

The feasible region determined by the constraints,  $x \ge 3$ ,  $x + y \ge 5$ ,  $x + 2y \ge 6$ , and  $y \ge 0$ , is as follows:



It can be seen that the feasible region is unbounded.

The values of Z at corner points A (6, 0), B (4, 1), and C (3, 2) are as follows.

| Corner point | Z = -x + 2y |
|--------------|-------------|
| A(6, 0)      | Z = - 6     |
| B(4, 1)      | Z = - 2     |
| C(3, 2)      | Z = 1       |

As the feasible region is unbounded, therefore, Z = 1 may or may not be the maximum value.

For this, we graph the inequality, -x + 2y > 1, and check whether the resulting half plane has points in common with the feasible region or not.

The resulting feasible region has points in common with the feasible region.

Therefore, Z = 1 is not the maximum value. Z has no maximum value.